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Hyman's Method Applied To the General 
Eigenvalue Problem 

By John Gary 

This note is concerned with the problem of finding the roots of the determinanta 
equation I A + XB I = 0. If B is nonsingular, then the problem is equivalent to find- 
ing the roots of the equation I B 'A + XI I 0. The latter problem can be solved 
by reduction of B'1A to Hessenberg form followed by application of Hyman's 
method coupled with the Laguerre algorithm to locate the eigenvalues [1]. The pur- 
pose of this note is to show that the reduction to Hessenberg form can be carried 
out without first reducing the problem to the standard form I A + XI I = 0. It is 
possible to define elementary row and column transformations with corresponding 
matrices P and Q such that A = PA Q is an upper Hessenberg matrix and B = PBQ 
is an upper triangular matrix. Since I P I = I Q I = ? 1, the eigenvalue problem 

I A + Xf = 0 is equivalent to the original problem. The eigenvalues of the trans- 
formed equation may be computed efficiently using the method devised by Parlett 
11]. 

The referee for this paper called the author's attention to the fact that the gen- 
eral problem I A + XB I = 0 can be reduced to the standard problem I A + X2I I 0 0 
even if B is singular. This apparently involves a determination of the rank of B and 
also a check of the linear independence of certain rows of a transformation of A. 
The method described herein requires almost twice the computing time that 
Hyman's method does when applied to the standard problem. Hyman's method is 
probably not as fast as the Q-R algorithm. Therefore the method described herein 
is probably inferior to one which reduces the problem to standard form. The reduc- 
tion to standard form might introduce greater error than Hyman's method applied 
directly to A + XB, but we have not made any comparisons. 

We will now describe this reduction to Hessenberg form. Gaussian elimination 
with interchanges applied to the rows of B can be used to reduce B to upper tri- 
angular form. This enables us to define a matrix p(l) such that B( ' = P(')B is upper 
triangular (that is, b8" = 0 if j < i). Also we have I p(l) = il and I p8' I < 1. 
We use the notation A(') = P(1'A and denote the order of A and B by N. 

Next we interchange the Nth and (N - 1)st rows of A") (if necessary) so that 
|aNl,1 I _ I a). Then we add a multiple of the (N - 1)st row to the Nth row 
so that the element a,(') is replaced by zero. This defines a matrix p(2). Note that 
the matrix B(2) = P(2)B(l) is no longer triangular. It may have a nonzero element 
bNN-1 . By Gaussian elimination with interchanges on the last two columns of B(23 
we may replace b (2)_, by zero. This defines a matrix Q(3) such that Q(3) 1 = 1 
and B(2)Q'3) is triangular. Note that these column operations have no effect on the 
first column of A (2) thus a(3) = 0, where A(3) = A(2)Q(3). We may continue until we 
have reduced the first column of A to Hessenberg form. The same method will re- 
duce the remaining columns of A to Hessenberg form leaving B in triangular form. 
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The diagrams below indicate the reduction procedure after B is in triangular form. 
The lines indicate the rows and columns in which operations were performed. 

A (1) B(1) 

X X X X 0 X XX 
XX X X 0 0 XX 
X X XX 0 0 X X 

X XX X XXX OX A (2) B(2) 

X X X X 0 X XX 
XX X X 0 0 XX 

0 X X X 0 0 XX 

A(3) B(3) 

X XX X 0 X X X 
X XX X 0 X Xx 
oX XX oo OXX 

Thus we have reduced the equation | A + XB | 0 to I A + XhB 1O0, where A 
is in Hessenberg form and B is triangular. The reduction will require 13N3/6 + 
O(N2) multiplications and additions. This estimate ignores the work required to 
perform the interchanges. 

The method of Parlett uses the Laguerre root finder to compute the eigenvalues. 
This requires evaluation of P(X), dP(X)/dX and d2P(X )/dX2, where P(X) = 

A + Xb 1. These are obtained by Hyman's method. 
We define three vectors 

1x4}, {xi}, {xI } 0 < i < N. 

by the relations 

XNl=, XN - O XN -0? 

N N 

- aiti-i-= X Xkaik + XI Xkbik k 
k=i k=i 

N N N 

-aiix-1 = E Xk ik + Xkbk + XZ Xk bk, 
k=i k-i k=-i 

N N N 

-dii-ixi-i T E Xk ai,k + 2 Xk'bijk + XE Xk bi k, 
k==i k=i k=i 

where aiO = -1. Then we have P(X) = Cxo, P'(X) = Cxo', and P" (X) Cx0 
where 

N-1 

C = (-1)N-l Ai+,i. 
i=1 

This requires 6N2 + O(N) multiplications and additions. If B is diagonal, as it is 
in Parlett's case, then 3N2 + O(N) operations are required. 
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The degree of the polynomial P(X) is a parameter in the Laguerre algorithm. 
If we overestimate the degree, the root finder will usually still converge, therefore 
we may assume the degree is N. We computed the roots in one test case with N = 98 
and the degree of P(X) equal to 47. With the degree set equal to 98 rather than 47 
the Laguerre algorithm required about 13% more iterations for convergence. 

We could have used plane rotations instead of similarity transformations to 
compute A and B. This might increase the stability of the reduction. In fact, the 
method of Wilkinson would doubtless yield a proof of stability in this case [2]. By 
stability we mean that the computed values of A and P should be close to those 
obtained from a computation without roundoff error. In the test case mentioned 
above we knew exact values for 23 of the 47 eigenvalues. The maximum error for 
the 23 computed roots was two in the tenth digit. The machine carries approxi- 
mately 11 digits. 

In general, the matrices A and B will be full Hessenberg and triangular matrices, 
even if the original matrices A and B were banded (that is aij = 0ij=O if i - j I 
> t). If the band width t is sufficiently small it may be better to use Gaussian 
elimination on the original matrix A + XB rather than reduction to Hessenberg 
form. 

An exercise in Householder's book shows how the polynomial eigenvalue prob- 
lem I XsI + X8'P1 + * + XP891 + P8 I = 0 may be reduced to the standard 
eigenvalue problem A -XI = 0 [3]. The same trick may be used to reduce the 
eigenvalue problem X8Po + Xs1lP1 + * + P8 0 to I A + X13 = 0. We define: 

0 0 ... O 

PSF-I 

0 ... I 0 -Ps-1 0 -I 

A =...,B=.. 

0I -P2 -I 0 
0 I -P2 0-Po 

If the order of Po, ... , P8 is N, then the order of A and B is sN. 
This method has been tested successfully on a few matrix problems which arose 

from differential eigenvalue problems [4]. In one case with N = 98 and the degree 
of P (X) equal to 47, approximately five minutes were required to compute the 47 
eigenvalues. The program was written in FORTRAN and run on a CDC 3600. 
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